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Model diffusion problem

We consider the elliptic equation
—div(K Vp) = b in Q
subject to the homogeneous Dirichlet b.c.

p=0 on 0f.

The problem can be reformulated as a system of first order equations:

divf = b,
f = —-KVp.

For simplicity we assume that K = I.
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Consider the mathematical 1dentity:

/gradpfdx:—/divfpdx Vf € Hyir (), p € HF ().
Q Q

Global support-operators (SO) methodology (for div & grad):
1. define degrees of freedom for variables p and f;

2. equip the discrete spaces for p and f with scalar products |-, -|g and
-, -] x, respectively;

3. choose a discrete approximation to the divergence operator, the prime
operator DIV : Xy — Q4;

4. derive the discrete approximation of the gradient operator, the derived
operator GRAD: Q4 — Xy, from the discrete Green formula:

[f%, GRAD p%x = —[DIV f¢, p%lq  Vp* € Qq, Vf* € Xq.
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Support operator method
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Mimetic discretizations (1/6)

Step 1 (degrees of freedom for p and f).

d

£y

W p¢ is defined at a center of cell ¢;.

m fd. ..., f& are defined at mid-points of cell edges. They approximate the
normal components of f, e.g.

z'dl %.fnzl
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Mimetic discretizations (2/6)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intensities with the scalar product

b, g Q—Z|ez|pzqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo £ z)dz.

The vectors can be recovered uniquely at
four vertices of quadrilateral e;. Let

4
1 d
1, 9ilx., = 5 > Tyl £ - g,
j=1

Mz

Then d

| fi 7 Qz
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d ™
f |
d d d d
\ Lfis g5 ) x., :§Z|Tij|fz'j'gij
j=1
N
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> Los Alamos 1=1

NATIONAL LABORATORY MDCMO03, San Diego, July 9-11 -



Mimetic discretizations (2/6)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intensities with the scalar product

b, g Q—Z|ez|pzqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo £ z)dz.

The vectors can be recovered uniquely at
four vertices of quadrilateral e;. Let

4
1 d
1, 9ilx., = 5 > Tyl £ - g,
j=1

Mz

Then d

| fi 7 Qz
s Los Alam z:1 .
NA?(?\IAL LEORA'SF% MDCMO03, San Diego, July 9-11 -




Mimetic discretizations (2/6)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intensities with the scalar product

b, g Q—Z|ez|pzqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo f z)dz.
fi: The vectors can be recovered uniquely at
/ four vertices of quadrilateral e;. Let
1A
111, gi1x., = 5 Z T35 F5 - g2
j=1
N
| Then d Z 4 g
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Mimetic discretizations (3/6)

Steps 3 & 4 (prime and derived operators).

The prime operator DIV follows from the Gauss the-

orem.

1
divf = lim — f-ndl.

le]—0 |e| Jae

Center-point quadrature gives

(DIVfd)z: ( zdl |ll‘+ zd2 |l2|+ z(é|l3|+ chl‘l4|)

1
€|
The derived operator GRAD is implicitly given by

[f¢, GRADp?|x = —[DIV f¢, pYlo  V¥p? € Qq, f* € Xu.
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Mimetic discretizations (4/6)

Short summary.

The stationary diffusion problem

—divKVp = b in
p = 0 on 01

1s rewritten as the 1st order system
f=—-KVp, divf =0
and discretized as follows:

f¢ = —GRAD p*, DIV f% = .
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Mimetic discretizations (5/6)

By the definition,
[f¢, GRAD p?|x = —[DIV f4, p?]g.
Let < -, - > be the usual vector dot product. Then
P ¢"lo =<Dp" ¢" >, [ ¢'lx =< Mf% g7 >.
Combining the last two formulas, we get

[f¢, GRADpdlx = < M f¢ GRADp? >
= —[DIVf pg=— < f¢ DIVIDp? > .

Therefore,
GRAD = — M~ 1 DIV D.

1s the non-local operator.
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Mimetic discretizations (6/6)

The derived mimetic discretizations are exact for linear solutions.
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Convergence analysis (1/9)

The convergence analysis 1s based on a connection of the SO method with a mixed
finite element (MFE) method:

™ the theory of MFE methods justifies the convergence and stability of
mimetic discretizations;

M the analysis can not be extended to quadrilateral meshes with non-convex
cells and to general polygonal meshes.
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Convergence analysis (2/9)

The system of mimetic finite difference equations
f¢ = —GRAD p*, DIV f% = p?
is equivalent to the following problem: Find (f¢, p¢) € X4 x Q4 such that

[, 9% x + [GRADp?, ¢%x =0,
[DIV f4, ¢%]g = [0, ¢Y] o, V(g?, q%) € Xgq x Qq.

Recall that by the definition,

[f%, GRAD p%|x = —[DIV f4, p%0.
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Convergence analysis (3/9)

Thus, the mimetic discretizations result in
/%, 9%x — DIV g4 p¥q = 0,
_[DIV fd7 qd]Q — _[bd7 qd]Qa V(gda qd) S Xd X Qd-

The MFE method with the modified Raviart-Thomas finite elements gives

(f" g") — (divg", p") = 0,
—(div f*, ¢") =—(b,¢") V(" ¢") € Xn X Qn.
p®:  at cell centers p™:  one per cell

Degrees of freedom:  fd:  pormal components  f#:  normal components,

at edge mid-points one per edge
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Convergence analysis (4/9)

LetZ : Xq X Qq — Xn X @Qp be the natural isomorphism between the discrete

spaces and
(9", ¢") = T((¢%, ¢%))-
Then
DIV g%, p¥]q = (divg", p")
and

b9, ¢%lq = (b, ¢")

if b¢ is the mean value of the source term over the i-th mesh cell.

Qo
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Convergence analysis (5/9)

Thus, the SO problem: Find (f¢, p?) € X4 x Qg such that
[f%, ¢%]x —[DIVg?, plq = O,
~[DIV f4, ¢%]q =% ¢%lq, V(9% ¢%) € Xa x Qu,
can be rewritten as a FE problem: Find (f", p"*) € X} x Q3 such that
(f*, g")n — (divg", p") = 0,
—<d1V fha qh) — _(b7 qh) v<gh7 qh) S Xh X Qh)

where
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Convergence analysis (6/9)

The FE problem has a unique solution if the following conditions hold:
® continuity:
(9", ") < ealg", g") V" € Xa;
® ellipticity:
a(g", ") < (" d"n V9" € Xp, divg" =0

W stability (LBB condition):

(div g", ¢")
sup

- >3l Vg" € Qn.
ghex, 119" |laiv

The constants ¢, co and cg3 are independent of A.

> Los Alam |
NA9(§\IAL LEO RA'gF% MDCMO03, San Diego, July 9-11 -




Convergence analysis (7/9)

Theorem (Strang). Suppose T}, is a shape regular triangulation of €2 and input data

are sufficiently smooth. Then

— fh iv< inf —g" iv A h
I = Ml < e{_int (1 = o"lla + Alg")]
and
—h<{'f —¢"||+ inf —h+Ah}
lp—p"ll < ey jof lp—q"|+ jnf [If—g"ll+A(g")]
where

(9",
A(g") = sup
wheX, 1w || div

is the consistency term and c is a positive constant independent of h.

o
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Convergence analysis (8/9)

Lemma. Suppose T}, is a shape regular quasi-uniform quadrilateral partition of 2.
Then

(9", w") = (9", w")n| < ch g1 [w"|laiv,

where c is a positive constant independent of A.

Thus, the consistency term is small, i.e.

A(g") < chllg"[1-

Remark: For many problems this estimate is very rough.
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Convergence analysis (9/9)

The approximation theory and above lemma result in optimal convergence
estimates.

Theorem. Suppose 7, is a shape regular quasi-uniform quadrilateral partition of €
and input data are sufficiently smooth. If (f, p") = Z((f?, p?)), then

If— < ch|fl,
1f = fllav < ch {||f]lx + l|div fll1},

lp — p"|| < chillpls + 11}

where c is a positive constant independent of A.

> Los Alam .
NA?(?\IAL LEORA'SF% MDCMO03, San Diego, July 9-11 -




Numerical experiments (1/4)

(Raviart-Thomas elements for a quadrilateral).

o1 1 @ x
L4
~ |, (I)e
4
T2
0.0 | (10 1 1

Pe(€,n) =21 (1 = &)1 —n) +x226(1 — 1) + 2360 + 24 (1 = &),

The Raviart-Thomas finite elements on € are

The Piola transformation is defined by

l; A
fh. = MD@ fi, 1=1,2,3,4.
’ Je
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Numerical experiments (2/4)

Let the exact solution be

p(x,y) = (|Jz — 0.5|% — 0.5%) (Jly — 0.5|* — 0.5%), 0<uz,y<l1,

where a = 2.6. It is easy to check that
div f = Ap € H(Q) and f e (HY Q)
Denote the errors we compute in our experiments by

p=lp—p"  and  ep=Ff —
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Numerical experiments (3/4)
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h—1 modified RT FE SO FD

Ep Ef Ep Ef
16 || 1.58e-3 | 2.34e-2 || 1.61le-3 | 2.35e-2
32 || 7.95e-4 | 1.22e-2 || 7.99e-4 | 1.22e-2
64 || 3.98e-4 | 6.29¢-3 || 3.99e-4 | 6.29¢-3
128 || 1.99e-4 | 3.22e-3 || 1.99e-4 | 3.22e-3
256 || 9.97e-5 | 1.64e-3 || 9.97e-5 | 1.64e-3
512 || 4.98e-5 | 8.32e-4 || 4.98¢e-5 | 8.32e-4

Ep Ef Ep Ef
16 || 1.42e-3 | 2.24e-2 || 1.43e-3 | 2.25¢-2
32 || 7.15e-4 | 1.17e-2 || 7.18e-4 | 1.17e-2
64 || 3.59e-4 | 5.96e-3 || 3.59e-4 | 5.98e-3
128 || 1.80e-4 | 3.06e-3 || 1.80e-4 | 3.07e-3
256 || 9.00e-5 | 1.56e-3 || 9.00e-5 | 1.56e-3
512 || 4.50e-5 | 7.93e-4 || 4.50e-5 | 7.93e-4
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Numerical experiments (4/4)

Accuracy of the mimetic discretizations versus the problem size.
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the convergence rate of mimetic discretizations for the linear diffusion
equation is optimal on both smooth and non-smooth meshes;

asymptotically, the SO and FE methods result in the same discretization
errors; however, the FE method requires a very accurate quadrature rule for
integrating RT finite elements; the methods are identical if

[f4 %% = (£, g").

similar methodology can be used to obtaing superconvergence estimates;

application of our methodology is limited to triangular and quadrilateral
meshes.
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